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The article presents a theoretical analysis of the flow distribution in an appara- 
tus with a fluidized bed on the assumption of minimum energy loss in the movement 
of the fluidizing agent through a distribution grid and the bed. The conditions 
of uniform fluidization were found. 
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To ensure normal operation of apparatus with a fluidized bed, characterized by uniform 
distribution of the fluidizing agent over the cross section of the bed, absence of stagnant 
zones and through channels, it is of great importance to choose correctly the parameters of 
the distribution grid [i]. A review of a large number of works connected with the investiga- 
tion of the effect of distribution grids on the quality of the fluidization and the selection 
of their optimum parameters is contained in the monographs [i, 2]. An analysis of past 
investigations leads to the conclusion that the methods of selecting distribution grids for 
apparatus with a fluidized bed suggested in the literature are not always sufficiently reli- 
able. 

The present work constitutes an attempt to approach the problem of selecting a distri- 
bution grid by using the variational principle of mechanics which was successfully used in a 
number of investigations for the analysis of fairly complex phenomena characterizing the 
processes of fluidization, and specifically for describing a nonuniform fluidization regime 
[3]. 

On the basis of the variational principle it may be assumed that the movement of the 
fluidization agent through a grid and bed is accompanied by such a redistribution of the 
speeds over the cross section of the apparatus which ensures minimum energy losses of the 
fluidizing agent. We assume further that the cross section of the apparatus can be arbi- 
trarily divided into two zones: zone 1 with cross section $I, where the speed wl > w, so 
that the bed in this zone is in the fluidized state with porosity el, and zone 2, where the 
speed w2 < we, as a result of which the bed in zone 2 is immobile and has porosity co. In 
addition to that we assume that in consequence of the liquid state of the bed, the height 
of the bed in zones 1 and 2 is equal and amounts to 

H = Ho" 1 - - 8 0  ( 1 )  
1--$ 

The total energy loss of the fluidizing agent upon passage through the grid and bed 
for the adopted model of flow distribution can be found from the equation 

AE ~ APtwiS, + AP~w~S~. (2) 

For the  subsequen t  a n a l y s i s  we i n t r o d u c e  the  d i m e n s i o n l e s s  magni tudes  

qJ 
Fig .  1~ Dependence of  6 
on Z with u =0.l.for glass 
spheres; I) theoretical; 

~! .~ ~ 2) experimental curve [5]. 
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F i g .  2. Dependence o f  Z ~ on u f o r  d i f -  
f e r e n t  Archimedean numbers: i) i02; 
2) 104; 3) 106; 4) 10s; 5) curve 
obtained by Zabrodsky's equation [2] 
for Ar = 106. 
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where the hydraulic resistances of the grid APg and of the fluidized bed APfl in uniform 
fluidization are determined by the relationships 

(3) 

~P~-~ (4) 
APg= 2 ~ '  

A / ~ I  --- (Ps - -  ,o)(1 - -  eo) gSo. ( 5 )  

The use of the dimensionless variables makes it possible to write the general balance 
equations and expressions for energy losses of the fluidizing agent in the following dimen- 
sionless form: 

Si+S2----  1, (ois ,+~r  . - -  I, e t s l + e ~  = 8 " '  (6 )  

= o)is i 4 -  Z0)%2o+~ 1+~]~ l - - c o  ~O)oS2 ' (7 )  A~T---- Zco~+ l - - e  ' l + ~ l  1 - - ~  

where the parameter ~ =KiRe0/12K(l -- ~o), and the Reynolds number is Reo =woda/v. 

For calculating the porosity of the fluidized bed we may use Todes' [4] relationship 
for uniform fluidization regime (according to which e = e(Ar, Re), where the Archimedean 

number is Ar = --7-] or the corresponding relationship for nonuniform fluidization, 

e.g., the equation obtained in [3]. 

If we use relationship (6)_and the relationship for calculating e, we can eliminate 
the quantities sl, ml, el, and e from Eq. (7) and represent A~as a function of only two 
unknowns, viz., s2 and ~. The obtained equation describing the function A~(s2, @) is 
very cumbersome, and it is therefore not given here. In accordance with the variational 
principle, the magnitudes s2 and $ can be found by minimizing the function A~(s2, #), 
however, since the function is very nonlinear with respect to the sought variables, their 
accurate analytical determination is at present impossible. 

To verify the correctness of the suggested model, the minimization of the function 
A~(s2, @) was carried out numerically with respect to the experimental data of [5], where 
the results of the measurement of the relative dispersion of the concentration of the solid 
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phase 6 near the grid, obtained with the aid of a capacitive sensor, are given. In accor- 
dance with the flow-distribution model adopted in the present work and with the assumption 
that the zones 1 and 2 are fixed in space and may be viewed as random variables with proba- 
bilities of being at the given point over the cross section of the apparatus equal to s~ 
and s2, respectively, for the values 8 we can obtain the ratio 

= V (~- 81)'s, +iF- 80)' s~ 
]--e 

As an example, Fig. 1 presents the results of calculating the dependence of 8 on Z with 
the reduced speed of the fluidizing agent u= 0.i for glass spheres. In the calculations, 
the porosity of the fluidized bed was found by Todes' [4] equation, and for so the value 
0.476 [i] was adopted which corresponds to the porosity of a loosened fluidized bed at the 
speed of the onset of fluidization. It can be seen from Fig. 1 that the theoretical curve 
(for Z < Z*) agrees qualitatively well with the experiment; however, the theoretical values 
of the relative dispersion of the concentration of the solid phase are approximately twice 
as large as the corresponding experimental data. The agreement may be considered satisfac- 
tory in view of the fact that, as the authors of [5] note, 8 increases with increasing dis- 
tance from the grid, whereas the data on the magnitude of 8, presented in [5], are derived 
from measurements near the grid. 

Since the determination of the grid parameters ensuring uniform fluidization over the 
entire cross section of the apparatus is of practical importance, it is interesting to 
examine the function A~(s2, ~) with extremely small values of s2. For this purpose we 
expand the function A~(s2, ~) into a series according to the magnitude of s2, and confining 
ourselves to two terms of the expansion, we obtain 

A~F= Z "k- 1 -k- s, [ 2 Z - -  [~-- llxoo(3Z -6 1) -I- Zll~sa~ + ~176 11 -{- T I +  "q_.___~ ] , (8) 

where, for the sake of the brevity, we denote 

] -- 8o . 8 -- 8 o 
= ~  , [ $ = ~ .  (9) 

I - - 8  I - - e  

The minimum of  t h e  f u n c t i o n  A ~ ( s 2 ,  ~) c o r r e s p o n d s  s p e c i f i c a l l y  to  t h e  c o n d i t i o n  3A ~ /  
3~ = 0, which enables us to write the relationship 

3 /Zoo2 ..{_ ~ il "q "~ ~2 ..l_ 2 ~ ~ ] 1~ 3Z'--  1 = O. (i0) 
+~1 I+~1 

Since according to the physical essence of the model, s2 >-0, it follows from Eq. (8) 
that the minimum of the function A~ (s=, ~) is attained with s2 = 0 (which corresponds to 
the condition of uniform fluidization) only if the following inequality applies: 

2z - -  ~ - -  ~coo (3z + l) + z ~ 3 ~  + ~coo 1 + ~ >~0. ( l l )  
l + n  

In  c o n s e q u e n c e  of  t h e  c o n s i d e r a b l e  n o n l i n e a r i t y  of  t h e  s y s t e m  o f  e q u a t i o n s  (10) and 
(11) w i t h  r e s p e c t  t o  t h e  s o u g h t  v a r i a b l e s  r and Z, t h e  s m a l l e s t  p e r m i s s i b l e  v a l u e  Z*, c o r -  
r e s p o n d i n g  to  t h e  e q u a l i t y  s i g n  in  r e l a t i o n s h i p  (11 ) ,  was found n u m e r i c a l l y .  Here ,  as  
b e f o r e ,  t he  v a l u e  eo = 0 .476  and Todes '  e q u a t i o n  [4] were  u s e d .  The r e s u l t s  of  t he  c a l c u l a -  
t i o n s  a r e  p r e s e n t e d  g r a p h i c a l l y  i n  F i g .  2 in  t h e  form of  t he  dependence  of  Z* on u in  l o g -  
a r i t h m i c  c o o r d i n a t e s  f o r  d i f f e r e n t  Archimedean  numbers .  The e s t a b l i s h e d  c o r r e l a t i o n  Z* = 
Z*(u ,  Ar) may be  used  f o r  p r a c t i c a l  p u r p o s e s .  For  a p p r o x i m a t e  c a l c u l a t i o n s  a r e l a t i o n s h i p  
may be  recommended which  was o b t a i n e d  as  a r e s u l t  of  t he  a n a l y t i c a l  s o l u t i o n  of  t he  s y s t e m  
of equations (i0) and (ii) with the condition n >> i. This solution has the form 

B + 1/13 ~ - -  4AC  (12) 
Z $ ~ s 

2A 
where 

I ~z . C ---- ~ W z -  I 
A = g ( W  x - l ) ;  B = ~ W  ~ +  3 4 - '  4 27 (13 )  

and W s w/wo = i/mo is the fluidization number. 
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The limited amount of direct experimental data on Z* makes it difficult to compare the 
obtained results with experimental results. We want to point out, however, that the calcula- 
tion is in good agreement with the data of [5], in accordance with which the value of Z* can 
be indirectly determined from the graph of the dependence of ~ on Z as that value of Z above 
which the grid parameters do not affect the magnitude of ~ (see Fig. i). To permit compari- 
son of the results of the present analysis with Zabrodsky's equation [2], Fig. 2 shows a 
curve plotted according to this equation for the number Ar = 106 using the coefficient k= 0.5, 
which is contained in the examined equation and which was recommended by Zabrodsky [2] on 
the basis of the processing of the experimental data. It follows from Fig. 2 that for small 
values of u, the dependences of Z* on u, calculated in the present work and according to 
Zabrodsky's equation, are in good qualitative agreement with each other. In view of the 
approximate nature of Zabrodsky's equation the results of the comparison may be considered 
fully satisfactory. Since by definition Z =WP~/APfl , the value of Z* makes it possible to 
choose a grid that has the required hydraulic resistance and ensures uniform fluidization. 

NOTATION 

S, cross-sectional area of the apparatus or of the corresponding zone; w, speed of the 
fluidizing agent; s, porosity of the bed; H, height of the bed; AE, energy loss of the fluid- 
izing agent; AP, hydraulic resistance; A~, Z, sl, s2, ~i, ~o, and ~ dimensionless magni- 
tudes determined by Eq. (3); ~, resistance coefficient of the grid; p, density of the fluid- 
izing agent; Ps, density of the particles of the solid phase; F, clear cross section of the 
grid; g, acceleration of gravity; n = KiReo/12K(l -- Co); K, Coseni--Karman constant; Ki, 
inertial component of the coefficient of hydraulic resistance of the fixed granular bed; 
Re = wda/~ , the Reynolds number for the particles; da, particle diameter taking the shape 
factor into account; ~, kinematic viscosity of the fluidizing agent; Ar=gd~(P~ -- p)/ 2 
Archimedean number; ~, relative dispersion of the concentration of the solid phase; u = (w -- 
Wo)/(w, -- Wo), reduced speed of the fluidizing agent; w,, swirling speed of the particles; 
Z*, minimum permissible value of Z ensuring conditions of uniform fluidization~ a and ~, 
dimensionless quantities determined by Eqs. (9); A, B~ and C, dimensionless quantities deter- 
mined by Eqs. (13); W, fluidization number; k, coefficient in Zabrodsky's equation [2]. 
Subscripts: i) zone i; 2) zone 2~ 0) at the speed of the onset of fluidization; fl) 
fluidized bed; g) grid. A bar above a quantity denotes its mean value, a tilde denotes 
uniform fluidization. 
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